Accueil🇫🇷Chercher

Matrice normale

En algèbre linéaire, une matrice carrée A à coefficients complexes est une matrice normale si elle commute avec sa matrice adjointe A*, c'est-à-dire si

Aâ‹…A* = A*â‹…A.

Toutes les matrices hermitiennes, antihermitiennes (en) ou unitaires sont normales, en particulier, parmi les matrices à coefficients réels, toutes les matrices symétriques, antisymétriques ou orthogonales.

Théorème

Une matrice A est normale si et seulement s'il existe une matrice unitaire U telle que U−1AU soit diagonale.

Ce théorème — cas particulier du théorème de décomposition de Schur — est connu sous le nom de théorème spectral, et les éléments diagonaux de U−1AU sont alors les valeurs propres de A.

Par conséquent, les valeurs singulières d'une matrice normale sont les modules de ses valeurs propres.

Articles connexes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.