Accueil🇫🇷Chercher

Loi log-Laplace

En théorie des probabilités et en statistique, la loi log-Laplace est la loi de probabilité continue d'une variable aléatoire dont le logarithme suit une loi de Laplace.

Loi log-Laplace
Image illustrative de l’article Loi log-Laplace
Densité de probabilité
de la loi à trois paramètres

Image illustrative de l’article Loi log-Laplace
Fonction de répartition
de la loi à trois paramètres

Paramètres paramètre de position
paramètre d'échelle
Support
Densité de probabilité
Fonction de répartition
Fonction caractéristique pas de forme explicite

Autrement dit, Si X suit une loi de Laplace avec paramètres et b, alors suit une loi log-Laplace. Les propriétés sont ainsi issues de celles de la loi de Laplace.

Une généralisation possible de cette loi est d'introduire un nouveau paramètre, c'est la loi log-Laplace à trois paramètres.

Si X suit une loi log-Laplace, on notera ou .

Loi à deux paramètres

Densité de probabilité

La densité de probabilité de la loi log-Laplace avec paramètres et b est donnée par[1] :

Par les changements de variables : et , la densité s'écrit sous le forme obtient :

Fonction de répartition

La fonction de répartition de la loi log-Laplace de paramètres et b est donnée par :

Moments

En fonction des paramètres, la loi log-Laplace peut ou peut ne pas avoir de moyenne finie et de variance finie[2].

Loi à trois paramètres

Caractérisations

Il existe la généralisation[2] suivante de la loi log-Laplace incluant un nouveau paramètre, c'est la loi log-Laplace à trois paramètres définie par la densité de probabilité :

avec , , . La fonction de répartition de la loi log-Laplace à trois paramètres est

Propriétés

  • Si , alors pour tout , ,
  • Si , alors,

Liens avec d'autres lois

  • (loi bêta),
  • (distribution de Pareto).

Applications

La loi log-Laplace est, par exemple, utilisée pour modéliser la forme de la densité de la température de l'air. Des études du climat de la ville islandaise de Stykkishólmur ont été réalisées et la loi log-Laplace a été utilisée ; plus particulièrement en mélangeant deux lois log-Laplace tronquées[3].

Cette loi est également appliquée dans d'autres domaines[2] : échanges commerciaux, tailles d'entreprise, etc.

Notes et références

  1. (en) Lindsey, J.K., Statistical analysis of stochastic processes in time, Cambridge, Cambridge University Press, , 354 p. (ISBN 978-0-521-83741-5), p. 33
  2. (en) Kozubowski, T.J. & Podgorski, K., « A Log-Laplace Growth Rate Model », University of Nevada-Reno (consulté le ), p. 4
  3. Manon Kohler, J.L. Mercier, Ester Helgadóttir, Christine Grosjean, « changement climatique en Islande 1830-1999 », sur http://studiacrescent.com/, (consulté le )
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.