Accueil🇫🇷Chercher

Loi hypergéométrique

La loi hypergéométrique de paramètres associés , et est une loi de probabilité discrète, décrivant le modèle suivant :

On tire simultanément (ou successivement sans remise (mais cela induit un ordre)) boules dans une urne contenant boules gagnantes et boules perdantes (avec , soit un nombre total de boules valant = ). On compte alors le nombre de boules gagnantes extraites et on appelle la variable aléatoire donnant ce nombre.
Loi hypergéométrique
Image illustrative de l’article Loi hypergéométrique
Fonction de masse
Image illustrative de l’article Loi hypergéométrique
Fonction de répartition

Paramètres
Support
Fonction de masse
Espérance
Mode
Variance
Asymétrie
Kurtosis normalisé

Fonction génératrice des moments
Fonction caractéristique

L'univers est l'ensemble des entiers de 0 à . La variable suit alors la loi de probabilité définie par[1]

(probabilité d'avoir succès).

Cette loi de probabilité s'appelle la loi hypergéométrique de paramètres et l'on note .

Il est nécessaire que soit un réel compris entre 0 et 1, que soit entier et que . Lorsque ces conditions ne sont pas imposées, l'ensemble des possibles est l'ensemble des entiers entre et .

Exemple simple

Un lac renferme une centaine de poissons dont un quart sont des brochets. On pêche 10 poissons ; la loi du nombre de brochets dans la prise est .

On trouve alors pour les couples successifs :

(0, 5%), (1, 18%), (2, 30%), (3, 26%), (4, 15%), (5, 5%), (6, 1%), (7, 0%), (8, 0%), (9, .0%), (10, 0%)

Donc un maximum de chances pour 2 ou 3 brochets. D'ailleurs, l'espérance du nombre de brochets vaut 10/4 = 2,5.

Calcul de la loi de probabilité

Il s'agit d'un tirage simultané (c'est-à-dire non ordonné et sans remise, même si la loi de probabilité resterait la même si l'on décidait d'ordonner le tirage car cela reviendrait à multiplier par le numérateur et le dénominateur de la quantité ) de éléments parmi , tirage que l'on considère comme équiprobable.

La combinatoire permet de dire que le cardinal de l'univers est .

Tirage Resté dans l'urne Total
Succès
Échecs
Total

L'évènement (voir tableau) représente le cas où l'on a tiré boules gagnantes parmi et boules perdantes parmi . Le cardinal de cet événement est donc .

La probabilité de l'évènement est donc .
Remarque : comme pour toute densité de probabilité, la somme des vaut 1, ce qui prouve l'identité de Vandermonde.

Espérance, variance et écart type

L'espérance d'une variable aléatoire suivant une loi hypergéométrique de paramètres , est la même que celle d'une variable binomiale de paramètres : .

La variance d'une variable aléatoire suivant une loi hypergéométrique de paramètres est , dont on remarque qu'elle tend vers la variance de la variable binomiale précédente lorsque tend vers l'infini.

L'écart type est alors .

Convergence

Lorsque tend vers l'infini, la loi hypergéométrique converge vers une loi binomiale de paramètres et . D'ailleurs, intuitivement, pour grand, tirer simultanément boules revient à effectuer fois une épreuve de Bernoulli dont la probabilité de succès serait ( est la proportion de boules gagnantes dans l'ensemble des boules), car il est très peu probable de retomber sur la même boule, même si on la replace dans l'urne.

En pratique, on peut approcher la loi hypergéométrique de paramètres par une loi binomiale de paramètres dès que , c'est-à-dire lorsque l'échantillon est 10 fois plus petit que la population .

Un exemple très classique de ce remplacement concerne les sondages. On considère fréquemment un sondage de personnes comme sondages indépendants alors qu'en réalité le sondage est exhaustif (on n'interroge jamais deux fois la même personne). Comme (nombre de personnes interrogées) < (population sondée)/10, cette approximation est légitime.

Origine de l'appellation hypergéométrique

L'appellation "loi hypergéométrique" vient du fait que sa série génératrice est un cas particulier de série hypergéométrique, série généralisant la série géométrique. En effet est bien une fraction rationnelle en .

Lien externe

(en) Eric W. Weisstein, « Hypergeometric Distribution », sur MathWorld

Notes et références

  1. (en) Jay L. Devore, Kenneth N. Berk et Matthew A. Carlton, Modern Mathematical Statistics with Applications, Springer International Publishing, coll. « Springer Texts in Statistics », (ISBN 978-3-030-55155-1 et 978-3-030-55156-8, DOI 10.1007/978-3-030-55156-8, lire en ligne)
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.