Accueil🇫🇷Chercher

Graphe de Meringer

Le graphe de Meringer est, en théorie des graphes, un graphe 5-régulier possédant 30 sommets et 75 arêtes.

Graphe de Meringer
Nombre de sommets 30
Nombre d'arêtes 75
Distribution des degrés 5-régulier
Rayon 3
Diamètre 3
Maille 5
Automorphismes 96
Nombre chromatique 3
Indice chromatique 5
Propriétés Régulier
Cage
Hamiltonien

Propriétés

Propriétés générales

Le diamètre du graphe de Meringer, l'excentricité maximale de ses sommets, est 3, son rayon, l'excentricité minimale de ses sommets, est 3 et sa maille, la longueur de son plus court cycle, est 5. Il s'agit d'un graphe 5-sommet-connexe et d'un graphe 5-arête-connexe, c'est-à-dire qu'il est connexe et que pour le rendre déconnecté il faut le priver au minimum de 5 sommets ou de 5 arêtes.

Coloration

Le nombre chromatique du graphe de Meringer est 3. C'est-à-dire qu'il est possible de le colorer avec 3 couleurs de telle façon que deux sommets reliés par une arête soient toujours de couleurs différentes mais ce nombre est minimal. Il n'existe pas de 2-coloration valide du graphe.

L'indice chromatique du graphe de Meringer est 5. Il existe donc une 5-coloration des arêtes du graphe telle que deux arêtes incidentes à un même sommet soient toujours de couleurs différentes. Ce nombre est minimal.

Propriétés algébriques

Le polynôme caractéristique de la matrice d'adjacence du graphe de Meringer est : .

Voir aussi

Liens internes

Liens externes

Références

    Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.