Estimation spectrale
L'estimation spectrale regroupe toutes les techniques d'estimation de la densité spectrale de puissance (DSP).
Estimations paramétriques
Les méthodes d'estimation spectrale paramétriques utilisent un modèle pour obtenir une estimation du spectre. Ces modèles reposent sur une connaissance a priori du processus et peuvent être classées en trois grandes catégories :
- Modèles autorégressif (AR)
- Modèles à moyenne ajustée (MA)
- Modèles autorégressif à moyenne ajustée (ARMA).
L'approche paramétrique se décompose en trois étapes :
- Choisir un modèle décrivant le processus de manière appropriée.
- Estimer les paramètres du modèle à partir de données disponibles.
- Estimer le spectre à partir des paramètres du modèle.
Estimation spectrale à l'aide d'un modèle AR
Un processus autorégressif est semblable à la fonction de transfert d'un filtre à réponse impulsionnelle infinie, en ce sens où la sortie dépend de ses états précédents.
Estimation classiques ou non-paramétriques
Ces méthodes d'estimation spectrale dites classiques ou non-paramétriques sont toutes basées sur le périodogramme, voici le raisonnement qui mène à celui-ci. En considérant un processus discret x(n) aléatoire stationnaire du second ordre, on écrit sa fonction d'autocorrélation :
D'après le théorème de Wiener-Khintchine, la densité spectrale de puissance est la transformée de Fourier de l'autocorrélation :
Estimer la densité spectrale de puissance revient à estimer l'autocorrélation du signal. De manière rigoureuse, l'autocorrélation s'écrit :
En pratique, obtenir un signal sur une durée infinie et l'acquérir sans bruit est impossible. Ainsi, on calcule l'autocorrélation sur un intervalle connu :
En prenant la transformée de Fourier de cette approximation, on obtient le périodogramme :
Le périodogramme
Le périodogramme permet une estimation simple de la densité spectrale de puissance en prenant le carré de la transformée de Fourier. Il a été introduit par Arthur Schuster en 1898.
N représente le nombre d'échantillons fixés
ω représente la pulsation
Biais du périodogramme
Le périodogramme est un estimateur biaisé de la densité spectrale de puissance.
L’espérance de l'estimation de l'autocorrélation se note :
Variance du périodogramme
Le périodogramme modifié
Une première modification apportée au périodogramme permet de supprimer le biais asymptotiquement.
Méthode de Bartlett
La méthode de Bartlett ou périodogramme moyenné modifié introduit une moyenne statistique.
Méthode de Welch
La méthode de Welch améliore celle de Bartlett en introduisant une segmentation du signal, un fenêtrage et la possibilité d'ajouter un recouvrement.
Méthode de Capon
Voir méthode SVD
Notes et références
(en) Oppenheim, Alan V.; Schafer, R. W.; and Buck, J. R., Discrete-time signal processing, Upper Saddle River, N.J., Prentice Hall, (ISBN 0-13-754920-2)