Algorithme d'intersection de Möller–Trumbore
L'algorithme d'intersection "rayon-triangle" de Möller–Trumbore, nommé après de ses inventeurs Tomas Möller et Ben Trumbore, est une méthode de calcul rapide de l'intersection d'un rayon et d'un triangle en trois dimensions, sans nécessiter le pré-calcul de l'équation du plan contenant le triangle[1]. Il est utilisé en infographie pour effectuer du lancer de rayons sur un maillage triangulaire[2].
Implémentation C++
Voici une implémentation de l'algorithme en C++ :
bool RayIntersectsTriangle(Vector3D rayOrigin,
Vector3D rayVector,
Triangle* inTriangle,
Vector3D& outIntersectionPoint)
{
const float EPSILON = 0.0000001;
Vector3D vertex0 = inTriangle->vertex0;
Vector3D vertex1 = inTriangle->vertex1;
Vector3D vertex2 = inTriangle->vertex2;
Vector3D edge1, edge2, h, s, q;
float a,f,u,v;
edge1 = vertex1 - vertex0;
edge2 = vertex2 - vertex0;
h = rayVector.crossProduct(edge2);
a = edge1.dotProduct(h);
if (a > -EPSILON && a < EPSILON)
return false; // Le rayon est parallèle au triangle.
f = 1.0/a;
s = rayOrigin - vertex0;
u = f * (s.dotProduct(h));
if (u < 0.0 || u > 1.0)
return false;
q = s.crossProduct(edge1);
v = f * rayVector.dotProduct(q);
if (v < 0.0 || u + v > 1.0)
return false;
// On calcule t pour savoir ou le point d'intersection se situe sur la ligne.
float t = f * edge2.dotProduct(q);
if (t > EPSILON) // Intersection avec le rayon
{
outIntersectionPoint = rayOrigin + rayVector * t;
return true;
}
else // On a bien une intersection de droite, mais pas de rayon.
return false;
}
Implémentation Java
Ce qui suit est une implémentation de l'algorithme en Java, utilisant javax.vecmath
(API Java 3D):
public class MollerTrumbore {
private static double EPSILON = 0.0000001;
public static boolean rayIntersectsTriangle(Point3d rayOrigin,
Vector3d rayVector,
Triangle inTriangle,
Point3d outIntersectionPoint) {
Point3d vertex0 = inTriangle.getVertex0();
Point3d vertex1 = inTriangle.getVertex1();
Point3d vertex2 = inTriangle.getVertex2();
Vector3d edge1 = new Vector3d();
Vector3d edge2 = new Vector3d();
Vector3d h = new Vector3d();
Vector3d s = new Vector3d();
Vector3d q = new Vector3d();
double a, f, u, v;
edge1.sub(vertex1, vertex0);
edge2.sub(vertex2, vertex0);
h.cross(rayVector, edge2);
a = edge1.dot(h);
if (a > -EPSILON && a < EPSILON) {
return false; // Le rayon est parallèle au triangle.
}
f = 1.0 / a;
s.sub(rayOrigin, vertex0);
u = f * (s.dot(h));
if (u < 0.0 || u > 1.0) {
return false;
}
q.cross(s, edge1);
v = f * rayVector.dot(q);
if (v < 0.0 || u + v > 1.0) {
return false;
}
// On calcule t pour savoir ou le point d'intersection se situe sur la ligne.
double t = f * edge2.dot(q);
if (t > EPSILON) // // Intersection avec le rayon
{
outIntersectionPoint.set(0.0, 0.0, 0.0);
outIntersectionPoint.scaleAdd(t, rayVector, rayOrigin);
return true;
} else // On a bien une intersection de droite, mais pas de rayon.
{
return false;
}
}
}
Voir aussi
- Algorithme d'intersection de Badouel
- Version MATLAB de cet algorithme (hautement vectorisé)
- Algorithme d'intersection rayon-triangle de Baldwin-Weber
- Algorithme de Schlick–Subrenat[3] pour l'intersection rayon-quadrilatère
Notes et références
(en) Cet article est partiellement ou en totalité issu de la page de Wikipédia en anglais intitulée « Möller–Trumbore intersection algorithm » (voir la liste des auteurs).
- Möller et Trumbore, « Fast, Minimum Storage Ray-Triangle Intersection », Journal of Graphics Tools, vol. 2,‎ , p. 21–28 (DOI 10.1080/10867651.1997.10487468)
- « Ray-Triangle Intersection », lighthouse3d (consulté le )
- Intersection de rayons de surfaces tessellées: quadrangles contre triangles, Schlick C., Subrenat G. Graphics Gems 1993
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.