Accueil🇫🇷Chercher

Équation cartésienne

En géométrie analytique, les solutions d'une équation E d'inconnues x et y peuvent être interprétées comme un ensemble de points M(x, y) du plan affine, rapporté à un repère cartésien. Quand ces points forment une courbe, on dit que E est une équation cartésienne de cette courbe. Plus généralement, une ou plusieurs équations cartésiennes à n inconnues déterminent un ensemble de points de l'espace affine de dimension n.

Exemples

Dans un espace à n dimensions, une équation cartésienne est par exemple de la forme f(x) = 0, où f est une fonction de dans .

  • Dans le plan (n = 2), l'équation s'écrit f(x, y) = 0.
  • Dans l'espace ordinaire (n = 3), l'équation s'écrit f(x, y, z) = 0.

Équations de courbes dans le plan

  • Équation d'une droite : a x + b y + c = 0, où a, b et c sont des constantes réelles. Un vecteur directeur de cette droite est (–b ; a) ; un vecteur orthogonal est (a ; b). Si c = 0 la droite passe par l'origine. Si a = 0 elle est parallèle à l'axe Ox, sinon elle le croise au point (–c/a, -0) ; si b = 0 elle est parallèle à l'axe Oy, sinon elle le croise au point (0, –c/b).
  • Équation du cercle de centre (x0, y0) et de rayon R : (xx0)2 + (yy0)2 = R2.
  • Équation d'une ellipse dont les axes de symétrie sont parallèles à ceux du repère : , où x0, y0, a et b sont des constantes réelles (a et b étant non nuls, et généralement choisis positifs). Cette ellipse a pour centre le point (x0, y0), et pour demi-axes |a| et |b|.

Équations de surfaces dans l'espace

  • Équation d'un plan : a x + b y + c z + d = 0. Ce plan est orthogonal au vecteur (a ; b ; c). Si a = 0 il est parallèle à l'axe Ox, sinon il coupe cet axe au point (–d/a, 0, 0) ; si b = 0 il est parallèle à l'axe Oy, sinon il coupe cet axe au point (0, –d/b, 0) ; si c = 0 il est parallèle à l'axe Oz, sinon il coupe cet axe au point (0, 0, –d/c).
  • Équation de la sphère de centre (x0, y0, z0) et de rayon R : (xx0)2 + (yy0)2 + (zz0)2 = R2.

Équations de courbes dans l'espace

Une courbe dans l'espace peut être définie comme l'intersection de deux surfaces, donc par deux équations cartésiennes. Une droite dans l'espace sera ainsi définie comme l'intersection de deux plans, donc par deux équations de plan.

Voir aussi

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.