Théorème de Siegel-Mahler
En mathématiques, le théorème de Siegel–Mahler ou théorème de Siegel sur les points entiers stipule que pour une courbe algébrique lisse C de genre g > 0 définie sur un corps de nombres K, dans un espace affine, il n'y a qu'un nombre fini de points sur C de coordonnées dans l'anneau de entiers O de K.
Le théorème a été prouvé pour la première fois en 1929 par Carl Ludwig Siegel et a été le premier résultat majeur sur le équations diophantiennes qui ne dépendaient que du genre et non d'une forme algébrique particulière des équations. Pour g > 1, il a été remplacé par le théorème de Faltings en 1983.
Histoire
En 1929, Siegel a prouvé le théorème en combinant une version du théorème d'approximation diophantienne de Thue-Siegel-Roth, avec le théorème de Mordell-Weil de géométrie diophantienne.
En 2002, Umberto Zannier et Pietro Corvaja ont donné une nouvelle preuve en utilisant une méthode basée sur le théorème du sous-espace[1].
Versions effectives
Le résultat de Siegel était inefficace en pratique (voir les résultats effectifs en théorie des nombres), puisque la méthode de Thue en approximation diophantienne est également inefficace pour décrire d'éventuelles très bonnes approximations rationnelles des nombres algébriques . Des résultats efficaces dans certains cas dérivent de la méthode de Baker.
Références
- (en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Siegel's theorem on integral points » (voir la liste des auteurs).
- Corvaja, P. and Zannier, U. "A subspace theorem approach to integral points on curves", Compte Rendu Acad. Sci., 334, 2002, p. 267–271 DOI 10.1016/S1631-073X(02)02240-9
- Enrico Bombieri et Walter Gubler, Heights in Diophantine Geometry, vol. 4, Cambridge University Press, coll. « New Mathematical Monographs », (ISBN 978-0-521-71229-3, DOI 10.2277/0521846153, zbMATH 1130.11034)
- Serge Lang, Elliptic curves: Diophantine analysis, vol. 231, coll. « Grundlehren der mathematischen Wissenschaften », , 128–153 p. (ISBN 3-540-08489-4, zbMATH 0388.10001)
- (de) Siegel, « Über einige Anwendungen diophantischer Approximationen », Sitzungsberichte der Preussischen Akademie der Wissenschaften,