Accueil🇫🇷Chercher

Théorème d'Erdős-Selfridge

En mathématiques, le théorème d'Erdős-Selfridge (à ne pas confondre avec un théorème de théorie des jeux du même nom) est un théorème de la théorie des nombres concernant une équation diophantienne. Il a été démontré par les deux mathématiciens Paul Erdős et John L. Selfridge en 1975[1].

Ce problème traite de la question de savoir si un produit de plusieurs nombres naturels consécutifs peut être une puissance parfaite. Avec leur théorème, Erdős et Selfridge fournissent une solution complète à ce problème et répondent à la question par la négative.

Formulation

Énoncé[1] :

Le produit d'au moins deux entiers naturels non nuls consécutifs n'est jamais une puissance d'entier.

De façon plus formelle :

L' équation diophantienne
n'a pas de solution pour des entiers .

NB : le problème pour se résout de manière élémentaire[2].

Théorèmes connexes

Paul Erdős a également résolu deux problèmes du même type :

  1. Le produit de deux ou plusieurs entiers naturels impairs consécutifs n'est jamais une puissance d'entier (Erdős 1939).
  2. Le coefficient binomial pour n'est jamais une puissance d'entier (Erdős 1951)[3].

Voir aussi

Bibliographie

  • Paul Erdős, János Surányi : Topics in the Theory of Numbers. Traduction de Barry Guiduli (Undergraduate Texts in Mathematics). 2e édition. Springer Verlag, New York 2003, (ISBN 0-387-95320-5)
  • Wacław Sierpiński: Elementary Theory of Numbers, North-Holland Mathematical Library, Band 31, North-Holland, Amsterdam, 1988, (ISBN 0-444-86662-0).

Références

  1. (en) Paul Erdős, J. L. Selfridge, « The product of consecutive integers is never a power », Illinois J. Math, vol. 19, , p. 292–301 (lire en ligne)
  2. Mohammed Aassila, 1000 challenges mathématiques, Algèbre, Ellipses, , p. 69
  3. Martin Aigner, Günter M. Ziegler, Raisonnements divins, Springer, , p. 15-18
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.