Accueil🇫🇷Chercher

Suite de Perrin

En mathématiques, la suite de Perrin est une variante de la suite de Padovan, de même relation de récurrence. Cette suite d'entiers est définie par récurrence par :

et pour tout .

Les 20 premiers termes sont[1] :

n 012345678910111213141516171819
30232557101217222939516890119158209

Primalité

Si n est un nombre premier alors est un multiple de n.

François Olivier Raoul Perrin avait conjecturé la réciproque en 1899. Cependant, le premier contre-exemple n > 1 a été trouvé en 1980 : il s'agit de 271 441. En effet, 271 441 divise mais 271 441 = 5212. Le nombre a 33 150 chiffres.

Le nombre 271 441 est un nombre pseudo-premier de Perrin[2]. Il y en a une infinité[3].

Les nombres de la suite de Perrin qui sont premiers forment la suite A074788 de l'OEIS, et leurs indices la suite OEIS A112881.

Notes et références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Perrin number » (voir la liste des auteurs).
  1. Suite OEIS A001608 de l'OEIS.
  2. Suite OEIS A013998 de l'OEIS.
  3. (en) Jon Grantham, « There are infinitely many Perrin pseudoprimes », J. Number Theory, vol. 130, no 5,‎ , p. 1117-1128 (DOI 10.1016/j.jnt.2009.11.008, lire en ligne).

Voir aussi

Bibliographie

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.