Accueil🇫🇷Chercher

Spirale de Sacks

La spirale de Sacks, créée par Robert Sacks en 1994, est une variante de la spirale d'Ulam. Elle diffère de la spirale d'Ulam de trois manières :

  • Elle place les points sur une spirale d'Archimède plutĂ´t que sur une spirale carrĂ©e.
  • Elle place le zĂ©ro au centre de la spirale.
  • Elle effectue une rotation complète Ă  chaque carrĂ© parfait, plutĂ´t qu'une demi-rotation comme dans la spirale d'Ulam.

Construction

La position de chaque entier est représentée par les coordonnées polaires suivantes :

où a représente un nombre de rotations, et non un angle en radians ou degrés.

Quelques alignements remarquables

  • Alignements toujours vides en nombres premiers :
    • Rayon horizontal de droite : nombres carrĂ©s ⇒ jamais premiers
    • Ligne immĂ©diatement infĂ©rieure : nombres de la forme n2 – 1 ⇒ toujours divisibles par n + 1 et n – 1
    • Rayon horizontal de gauche : nombres de la forme n2 + n ⇒ toujours divisibles par n et n + 1.
    • Voisinage des rayons verticaux.
  • Courbes apparaissant anormalement denses en nombres premiers.
    • Spirale dense en nombres premiers se terminant, dans l'illustration ci-contre, presque au bas du disque : Nombres de la forme n2 + n + 41, Il s'agit du polynĂ´me dĂ©couvert par Leonhard Euler en 1774 et qui porte son nom.
    • Autre spirale dense, 24 rangs au-dessus : nombres de la forme n2 + n + 17
    • Ligne immĂ©diatement au-dessus du rayon horizontal de gauche : nombres de la forme n2 + n – 1

L'Ă©tendue de ces alignements aux grands nombres premiers est aujourd'hui inconnue.

Spirale du nombre de diviseurs

Spirale de Sacks du nombre de diviseurs des 100 000 premiers entiers naturels.

Tout comme pour la spirale d'Ulam, une autre façon de mettre en évidence des courbes remarquables est de tracer au-dessus de chaque nombre placé sur la spirale, un disque de diamètre égal à son nombre de diviseurs. Les nombres premiers sont donc représentés par un disque de diamètre 2.

Annexes

Articles connexes

Liens externes

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.