Radical de Jacobson
En algèbre, le radical de Jacobson d'un anneau commutatif est l'intersection de ses idéaux maximaux. Cette notion est due à Nathan Jacobson qui le premier en a fait l'étude systématique. Un élément x appartient au radical de Jacobson de l'anneau A si et seulement si 1 + ax est inversible pour tout a de A.
Dans le cas non commutatif, on définit le radical de Jacobson comme étant l'intersection de tous les idéaux maximaux à gauche et l'on a encore : x appartient au radical si et seulement si tous les 1 + ax sont inversibles à gauche[1]. C'est un idéal bilatère et on aurait pu définir de manière équivalente le radical de Jacobson comme l'intersection de tous les idéaux maximaux à droite[1].
Note et référence
- (en) Tsit Yuen Lam, A First Course in Noncommutative Rings, Springer, coll. « GTM » (no 131), , 2e éd. (1re éd. 1991), 385 p. (ISBN 978-0-387-95183-6, lire en ligne), p. 50-51.
Articles connexes
- Anneau semi-primitif (anneau dont le radical de Jacobson est nul)
- Nilradical
- Radical d'un anneau (en)
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.