Accueil🇫🇷Chercher

Quintuplet premier

Un quintuplet premier est une suite de cinq nombres premiers consécutifs de la forme (p, p+2, p+6, p+8, p+12) ou (p, p+4, p+6, p+10, p+12). Toute suite de cinq nombres premiers consécutifs d'écarts entre eux minimaux est de l'une de ces deux formes, en dehors de (2,3,5,7,11) et (3,5,7,11,13).

Quintuplet de nombres premiers distants d'écarts minimaux constants

Un quintuplet premier contient toujours un quadruplet premier (p, p+2, p+6, p+8). Le cinquième terme est ajouté :

  • soit à droite p + 12 (première forme),
  • soit à gauche p – 4 (seconde forme).

Propriétés des quintuplets de nombres premiers distants d'écarts minimaux constants

Un quintuplet premier contient :

  • deux paires de nombres premiers jumeaux proches : « (p, p + 2) » et « (p + 6, p + 8) », formant un quadruplet premier
  • trois triplets premiers se chevauchant partiellement : « (p, p + 2, p + 6) », « (p + 2, p + 6, p + 8) », « (p + 6, p + 8, p + 12) » dans le cas de la première forme ou « (p - 4, p, p + 2) », « (p, p + 2, p + 6) », « (p + 2, p + 6, p + 8) » dans le cas de la seconde forme.

Liste de quintuplets premiers

Les dix plus petits quintuplets premiers de la première forme (ajout d'un terme p + 12 à droite d'un quadruplet) sont :

  • (5, 7, 11, 13, 17) ;
  • (11, 13, 17, 19, 23) ;
  • (101, 103, 107, 109, 113) ;
  • (1 481, 1 483, 1 487, 1 489, 1 493) ;
  • (16 061, 16 063, 16 067, 16 069, 16 073) ;
  • (19 421, 19 423, 19 427, 19 429, 19 433) ;
  • (21 011, 21 013, 21 017, 21 019, 21 023) ;
  • (22 271, 22 273, 22 277, 22 279, 22 283) ;
  • (43 781, 43 783, 43 787, 43 789, 43 793) ;
  • (55 331, 55 333, 55 337, 55 339, 55 343).

Les onze plus petits quintuplets de nombres premiers de la seconde forme (ajout d'un terme p – 4 à gauche d'un quadruplet) sont :

  • (7, 11, 13, 17, 19) ;
  • (97, 101, 103, 107, 109) ;
  • (1 867, 1 871, 1 873, 1 877, 1 879) ;
  • (3 457, 3 461, 3 463, 3 467, 3 469) ;
  • (5 647, 5 651, 5 653, 5 657, 5 659) ;
  • (15 727, 15 731, 15 733, 15 737, 15 739) ;
  • (16 057, 16 061, 16 063, 16 067, 16 069) ;
  • (19 417, 19 421, 19 423, 19 427, 19 429) ;
  • (43 777, 43 781, 43 783, 43 787, 43 789) ;
  • (79 687, 79 691, 79 693, 79 697, 79 699) ;
  • (88 807, 88 811, 88 813, 88 817, 88 819).

On ignore s'il existe un nombre infini de tels quintuplets.

Référence

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Prime quadruplet » (voir la liste des auteurs).

Bibliographie

  • Jean-Paul Delahaye, Merveilleux nombres premiers : Voyage au cÅ“ur de l'arithmétique, [détail de l’édition]

Liens externes

  • (en) Suite OEIS A022006 de l'OEIS : début de la liste des p tels que (p, p+2, p+6, p+8, p+12) est un quintuplet premier (première forme) ;
  • (en) Suite suite A022007 de l'OEIS de l'OEIS : début de la liste des p tels que (p, p+4, p+6, p+10, p+12) est un quintuplet premier (seconde forme).
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.