Accueil🇫🇷Chercher

Plan tangent

Le plan tangent en P à une surface Σ est une approximation de la surface au voisinage de P par un plan affine. Il a le même vecteur normal que cette surface. Si l'on dispose de ce vecteur normal, l'équation du plan tangent en découle puisqu'elle fait intervenir les composantes (x, y, z) des vecteurs qui sont, par définition, orthogonaux à ce vecteur.

Le plan TxM (gris clair) est tangent à la surface en M, selon le chemin orienté γ(t), passant par M où le vecteur ν est tangent au chemin.

En d'autres termes, si le vecteur de composantes (a, b, c) est normal à la surface, tous les vecteurs de composantes (x, y, z) qui vérifient

appartiennent au plan vectoriel tangent à la surface et réciproquement. Son équation est par conséquent

aâ‹…x + bâ‹…y + câ‹…z = 0.

En géométrie différentielle, cette notion se généralise à celle d'espace tangent à une variété différentielle.

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.