AccueilđŸ‡«đŸ‡·Chercher

Nombre parfait multiple

En mathématiques, un nombre parfait multiple (aussi appelé nombre multiparfait ou nombre plus-que-parfait) est une généralisation d'un nombre parfait.

DĂ©monstration, Ă  l'aide de tiges Cuisenaire, de la 2-perfection du nombre 6

Pour un nombre naturel donné k, un nombre n est appelé k-parfait si et seulement si la somme de tous les diviseurs positifs de n, ) est égale à kn; ainsi, un nombre est parfait si et seulement si il est 2-parfait. Un nombre qui est k-parfait pour un certain k est appelé un nombre parfait multiple. Les nombres k-parfaits sont connus pour chaque valeur de k jusqu'à 11 (juillet 2004).

Il peut ĂȘtre dĂ©montrĂ© que :

  • Pour un nombre premier donnĂ© p, si n est p-parfait et p ne divise pas n, alors pn est (p + 1)-parfait. Ceci implique que si un entier n est un nombre 3-parfait divisible par 2 mais pas par 4, alors n/2 est un nombre parfait impair, pour lequel aucun n'est connu.
  • Si 3n est 4k-parfait et 3 ne divise pas n, alors n est 3k-parfait.

Plus petits nombres k-parfaits

La table suivante donne une vue d'ensemble des plus petits nombres k-parfaits pour (voir la suite A007539 de l'OEIS) :

kPlus petit nombre k-parfaitDĂ©couvert par
11anciens
26anciens
3120anciens
430 240René Descartes, environ 1638
514 182 439 040René Descartes, environ 1638
6154 345 556 085 770 649 600Robert Daniel Carmichael, 1907
7141 310 897 947 438 348 259 849 402 738 485 523 264 343 544 818 565 120 000TE Mason, 1911

Liens externes


(en) Cet article est partiellement ou en totalitĂ© issu de l’article de WikipĂ©dia en anglais intitulĂ© « Multiply perfect number » (voir la liste des auteurs).
Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplĂ©mentaires peuvent s’appliquer aux fichiers multimĂ©dias.