Lemme de Sauer  
    Énoncé On dit qu'une classe 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        
          
            X 
           
         
       
     
    {\displaystyle {\mathcal {X}}} 
   
 
  
    
      
        S 
       
     
    {\displaystyle S} 
   
 
  
    
      
        { 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{x_{1},\dots ,x_{n}\}} 
   
 
  
    
      
        C 
        ∈ 
        
          
            C 
           
         
       
     
    {\displaystyle C\in {\mathcal {C}}} 
   
 
  
    
      
        C 
        ∩ 
        { 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        } 
        = 
        S 
       
     
    {\displaystyle C\cap \{x_{1},\dots ,x_{n}\}=S} 
   
 
  
    
      
        { 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{x_{1},\dots ,x_{n}\}} 
   
 
  
    
      
        S 
       
     
    {\displaystyle S} 
   
 
  
    
      
        { 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{x_{1},\dots ,x_{n}\}} 
   
 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        { 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        } 
       
     
    {\displaystyle \{x_{1},\dots ,x_{n}\}} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        n 
        ) 
       
     
    {\displaystyle \Delta ({\mathcal {C}};n)} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        n 
        ) 
        = 
        
          max 
          
            
              x 
              
                1 
               
             
            , 
            … 
            , 
            
              x 
              
                n 
               
             
            ∈ 
            
              
                X 
               
             
           
         
        
          c 
          a 
          r 
          d 
         
        { 
        C 
        ∩ 
        { 
        
          x 
          
            1 
           
         
        , 
        … 
        , 
        
          x 
          
            n 
           
         
        } 
        : 
        C 
        ∈ 
        
          
            C 
           
         
        } 
        . 
       
     
    {\displaystyle \Delta ({\mathcal {C}};n)=\max _{x_{1},\dots ,x_{n}\in {\mathcal {X}}}\mathrm {card} \{C\cap \{x_{1},\dots ,x_{n}\}:C\in {\mathcal {C}}\}.} 
   
 Le lemme de Sauer donne une borne majorante de 
  
    
      
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        n 
        ) 
       
     
    {\displaystyle \Delta ({\mathcal {C}};n)} 
   
 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        
          
            V 
           
         
       
     
    {\displaystyle {\mathcal {V}}} 
   
 
  
    
      
        ∀ 
        n 
        < 
        
          
            V 
           
         
        , 
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        n 
        ) 
        ≤ 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            
              V 
             
           
         
        
          
            
              ( 
             
            
              n 
              i 
             
            
              ) 
             
           
         
        
          
            et 
           
         
        ∀ 
        n 
        ≥ 
        
          
            V 
           
         
        , 
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        n 
        ) 
        ≤ 
        
          
            ( 
            
              
                
                  e 
                  n 
                 
                
                  V 
                 
               
             
            ) 
           
          
            
              V 
             
           
         
        = 
        O 
        ( 
        
          n 
          
            
              V 
             
           
         
        ) 
        . 
       
     
    {\displaystyle \forall n<{\mathcal {V}},\quad \Delta ({\mathcal {C}};n)\leq \sum _{i=0}^{\mathcal {V}}{\binom {n}{i}}\quad {\textrm {et}}\quad \forall n\geq {\mathcal {V}},\quad \Delta ({\mathcal {C}};n)\leq \left({\frac {en}{\mathcal {V}}}\right)^{\mathcal {V}}=O(n^{\mathcal {V}}).} 
   
  
    Preuve Une manière classique de démontrer ce résultat est de le faire par récurrence[3] [4] 
  
    
      
        n 
        + 
        
          
            V 
           
         
        ∈ 
        
          N 
         
       
     
    {\displaystyle n+{\mathcal {V}}\in \mathbb {N} } 
   
 
Initialisation :  Si 
  
    
      
        n 
        = 
        0 
        , 
        { 
        
          
            C 
           
         
        ∩ 
        ∅ 
        : 
        C 
        ∈ 
        
          
            C 
           
         
        } 
        = 
        { 
        ∅ 
        } 
       
     
    {\displaystyle n=0,\{{\mathcal {C}}\cap \emptyset :C\in {\mathcal {C}}\}=\{\emptyset \}} 
   
 
  
    
      
        Δ 
        ( 
        
          
            C 
           
         
        , 
        0 
        ) 
        = 
        1 
        = 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            
              V 
             
           
         
        
          
            
              ( 
             
            
              0 
              i 
             
            
              ) 
             
           
         
       
     
    {\displaystyle \Delta ({\mathcal {C}},0)=1=\sum _{i=0}^{\mathcal {V}}{\binom {0}{i}}} 
   
 
Si 
  
    
      
        
          
            V 
           
         
        = 
        1 
        , 
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {V}}=1,{\mathcal {C}}} 
   
 
Hérédité :  Supposons que la propriété soit vérifiée pour tout 
  
    
      
        
          n 
          ′ 
         
        + 
        
          
            
              V 
             
           
          ′ 
         
        < 
        n 
        + 
        
          
            V 
           
         
       
     
    {\displaystyle n'+{\mathcal {V}}'<n+{\mathcal {V}}} 
   
 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        
          
            X 
           
         
       
     
    {\displaystyle {\mathcal {X}}} 
   
 
  
    
      
        
          
            V 
           
         
       
     
    {\displaystyle {\mathcal {V}}} 
   
 
  
    
      
        S 
       
     
    {\displaystyle S} 
   
 
  
    
      
        n 
       
     
    {\displaystyle n} 
   
 
  
    
      
        
          
            X 
           
         
       
     
    {\displaystyle {\mathcal {X}}} 
   
 
  
    
      
        s 
        ∈ 
        S 
       
     
    {\displaystyle s\in S} 
   
 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        
          
            C 
           
         
        = 
        
          
            
              C 
             
           
          
            1 
           
         
        ∪ 
        
          
            
              C 
             
           
          
            2 
           
         
       
     
    {\displaystyle {\mathcal {C}}={\mathcal {C}}_{1}\cup {\mathcal {C}}_{2}} 
   
 
  
    
      
        
          
            
              
                
                  
                    
                      C 
                     
                   
                  
                    1 
                   
                 
               
              
                = 
                { 
                C 
                ∈ 
                
                  
                    C 
                   
                 
                : 
                s 
                ∉ 
                C 
                } 
                ∪ 
                { 
                C 
                ∪ 
                { 
                s 
                } 
                ∈ 
                
                  
                    C 
                   
                 
                : 
                C 
                ∉ 
                
                  
                    C 
                   
                 
                } 
               
             
            
              
                
                  
                    
                      C 
                     
                   
                  
                    2 
                   
                 
               
              
                = 
                { 
                C 
                ∪ 
                { 
                s 
                } 
                ∈ 
                
                  
                    C 
                   
                 
                : 
                C 
                ∈ 
                
                  
                    C 
                   
                 
                } 
                . 
               
             
           
         
       
     
    {\displaystyle {\begin{array}{rl}{\mathcal {C}}_{1}&=\{C\in {\mathcal {C}}:s\not \in C\}\cup \{C\cup \{s\}\in {\mathcal {C}}:C\not \in {\mathcal {C}}\}\\{\mathcal {C}}_{2}&=\{C\cup \{s\}\in {\mathcal {C}}:C\in {\mathcal {C}}\}.\end{array}}} 
   
 
On a que 
  
    
      
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        S 
        ) 
        = 
        Δ 
        ( 
        
          C 
          
            1 
           
         
        ; 
        S 
        ) 
        + 
        Δ 
        ( 
        
          C 
          
            2 
           
         
        ; 
        S 
        ) 
       
     
    {\displaystyle \Delta ({\mathcal {C}};S)=\Delta (C_{1};S)+\Delta (C_{2};S)} 
   
 
  
    
      
        Δ 
        ( 
        
          
            
              C 
             
           
          
            1 
           
         
        ; 
        S 
        ) 
        = 
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        S 
        ∖ 
        { 
        s 
        } 
        ) 
       
     
    {\displaystyle \Delta ({\mathcal {C}}_{1};S)=\Delta ({\mathcal {C}};S\setminus \{s\})} 
   
 
  
    
      
        
          
            
              C 
             
           
          ′ 
         
       
     
    {\displaystyle {\mathcal {C}}'} 
   
 
  
    
      
        C 
       
     
    {\displaystyle C} 
   
 
  
    
      
        
          
            
              C 
             
           
          
            2 
           
         
       
     
    {\displaystyle {\mathcal {C}}_{2}} 
   
 
  
    
      
        
          
            
              C 
             
           
          ′ 
         
        = 
        
          { 
          
            C 
            ∈ 
            
              
                C 
               
             
            : 
            s 
            ∉ 
            C 
            , 
            C 
            ∪ 
            { 
            s 
            } 
            ∈ 
            
              
                C 
               
             
           
          } 
         
        . 
       
     
    {\displaystyle {\mathcal {C}}'=\left\{C\in {\mathcal {C}}:s\not \in C,C\cup \{s\}\in {\mathcal {C}}\right\}.} 
   
  on a que 
  
    
      
        Δ 
        ( 
        
          
            
              C 
             
           
          
            2 
           
         
        ; 
        S 
        ) 
        = 
        Δ 
        ( 
        
          
            
              C 
             
           
          ′ 
         
        ; 
        S 
        ∖ 
        { 
        s 
        } 
        ) 
       
     
    {\displaystyle \Delta ({\mathcal {C}}_{2};S)=\Delta ({\mathcal {C}}';S\setminus \{s\})} 
   
 
Par construction, si 
  
    
      
        
          
            
              C 
             
           
          ′ 
         
       
     
    {\displaystyle {\mathcal {C}}'} 
   
 
  
    
      
        
          
            C 
           
         
       
     
    {\displaystyle {\mathcal {C}}} 
   
 
  
    
      
        { 
        s 
        } 
       
     
    {\displaystyle \{s\}} 
   
 
  
    
      
        
          V 
          C 
          D 
         
        ( 
        
          
            
              C 
             
           
          ′ 
         
        ) 
        + 
        1 
        ≤ 
        
          V 
          C 
          D 
         
        ( 
        
          
            C 
           
         
        ) 
        ⇔ 
        
          V 
          C 
          D 
         
        ( 
        
          
            
              C 
             
           
          ′ 
         
        ) 
        ≤ 
        
          
            V 
           
         
        − 
        1 
       
     
    {\displaystyle \mathrm {VCD} ({\mathcal {C}}')+1\leq \mathrm {VCD} ({\mathcal {C}})\Leftrightarrow \mathrm {VCD} ({\mathcal {C}}')\leq {\mathcal {V}}-1} 
   
 
  
    
      
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        S 
        ) 
        = 
        Δ 
        ( 
        
          
            C 
           
         
        ; 
        S 
        ∖ 
        { 
        s 
        } 
        ) 
        + 
        Δ 
        ( 
        
          
            
              C 
             
           
          ′ 
         
        ; 
        S 
        ∖ 
        { 
        s 
        } 
        ) 
        ≤ 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            
              V 
             
           
         
        
          
            
              ( 
             
            
              
                n 
                − 
                1 
               
              i 
             
            
              ) 
             
           
         
        + 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            
              
                V 
               
             
            − 
            1 
           
         
        
          
            
              ( 
             
            
              
                n 
                − 
                1 
               
              i 
             
            
              ) 
             
           
         
        = 
        
          ∑ 
          
            i 
            = 
            0 
           
          
            
              V 
             
           
         
        
          
            
              ( 
             
            
              n 
              i 
             
            
              ) 
             
           
         
       
     
    {\displaystyle \Delta ({\mathcal {C}};S)=\Delta ({\mathcal {C}};S\setminus \{s\})+\Delta ({\mathcal {C}}';S\setminus \{s\})\leq \sum _{i=0}^{\mathcal {V}}{\binom {n-1}{i}}+\sum _{i=0}^{{\mathcal {V}}-1}{\binom {n-1}{i}}=\sum _{i=0}^{\mathcal {V}}{\binom {n}{i}}} 
   
 Si 
  
    
      
        n 
        ≥ 
        
          
            V 
           
         
       
     
    {\displaystyle n\geq {\mathcal {V}}} 
   
 
  
    
      
        1 
        + 
        x 
        ≤ 
        
          e 
          
            x 
           
         
       
     
    {\displaystyle 1+x\leq e^{x}} 
   
 
  
    
      
        
          
            
              
                
                  
                    ( 
                    
                      
                        
                          V 
                         
                        n 
                       
                     
                    ) 
                   
                  
                    
                      V 
                     
                   
                 
                ≤ 
                1 
                 
              
                ⇒ 
                
                  
                    ( 
                    
                      
                        
                          V 
                         
                        n 
                       
                     
                    ) 
                   
                  
                    
                      V 
                     
                   
                 
                Δ 
                ( 
                
                  
                    C 
                   
                 
                , 
                n 
                ) 
                ≤ 
                
                  
                    ( 
                    
                      
                        
                          V 
                         
                        n 
                       
                     
                    ) 
                   
                  
                    
                      V 
                     
                   
                 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    
                      V 
                     
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      i 
                     
                    
                      ) 
                     
                   
                 
                ≤ 
                
                  ∑ 
                  
                    i 
                    = 
                    0 
                   
                  
                    
                      V 
                     
                   
                 
                
                  
                    
                      ( 
                     
                    
                      n 
                      i 
                     
                    
                      ) 
                     
                   
                 
                
                  
                    ( 
                    
                      
                        
                          V 
                         
                        n 
                       
                     
                    ) 
                   
                  
                    i 
                   
                 
                ≤ 
                
                  
                    ( 
                    
                      1 
                      + 
                      
                        
                          
                            V 
                           
                          n 
                         
                       
                     
                    ) 
                   
                  
                    n 
                   
                 
               
             
            
              
                ⇒ 
                Δ 
                ( 
                C 
                , 
                n 
                ) 
                ≤ 
                
                  
                    ( 
                    
                      
                        n 
                        
                          V 
                         
                       
                     
                    ) 
                   
                  
                    
                      V 
                     
                   
                 
                
                  
                    ( 
                    
                      1 
                      + 
                      
                        
                          
                            V 
                           
                          n 
                         
                       
                     
                    ) 
                   
                  
                    n 
                   
                 
                ≤ 
                
                  
                    ( 
                    
                      
                        
                          e 
                          n 
                         
                        
                          V 
                         
                       
                     
                    ) 
                   
                  
                    
                      V 
                     
                   
                 
               
             
           
         
       
     
    {\displaystyle {\begin{aligned}\left({\frac {\mathcal {V}}{n}}\right)^{\mathcal {V}}\leq 1\quad &\Rightarrow \quad \left({\frac {\mathcal {V}}{n}}\right)^{\mathcal {V}}\Delta ({\mathcal {C}},n)\leq \left({\frac {\mathcal {V}}{n}}\right)^{\mathcal {V}}\sum _{i=0}^{\mathcal {V}}{\binom {n}{i}}\leq \sum _{i=0}^{\mathcal {V}}{\binom {n}{i}}\left({\frac {\mathcal {V}}{n}}\right)^{i}\leq \left(1+{\frac {\mathcal {V}}{n}}\right)^{n}\\&\Rightarrow \quad \Delta (C,n)\leq \left({\frac {n}{\mathcal {V}}}\right)^{\mathcal {V}}\left(1+{\frac {\mathcal {V}}{n}}\right)^{n}\leq \left({\frac {en}{\mathcal {V}}}\right)^{\mathcal {V}}\end{aligned}}} 
   
  
    Références  (en)  N. Sauer, « On the density of families of sets  » , Journal of Combinatorial Theory vol.  13,‎  1972 , p.  145-147 (lire en ligne )   (en)  S. Shelah, « A combinatorial problem; stability and order for models and theories in infinitary languages  » , Pacific Journal of Mathematics vol.  41,‎  1972 , p.  247-261 (lire en ligne )   (en)  Aad W. Van der Vaart et Jon A. Wellner, Weak convergence and empirical processes , Springer  Massih-Reza Amini, Apprentissage machine de la théorie à la pratique , Eyrolles   
    Cet article est issu de 
wikipedia . Text licence: 
CC BY-SA 4.0 , Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.