Bootstrap conforme
Le bootstrap conforme est une méthode non-perturbative pour résoudre des théories conformes des champs. Contrairement à des techniques traditionnelles de la théorie quantique des champs, le bootstrap n'utilise pas le Lagrangien de la théorie, et il s'applique également à des théories non-lagrangiennes. En revanche, le bootstrap ne fait que référence à des paramètres observables de la théorie, comme les dimensions d'échelle des opérateurs locaux et leurs fonctions à trois points. Le bootstrap a son origine dans le développement de courte distance dans les théories conformes, qui les munit d'une structure algébrique, et le fait que ce développement a un rayon de convergence non nul.
La notion du bootstrap conforme a été développée dans les années 1970 par le physicien soviétique Alexander Polyakov[1] et les physiciens italiens Sergio Ferrara, Raoul Gatto et Aurelio Grillo[2].
En deux dimensions, le bootstrap conforme a été mené à bien dans un premier temps en 1983 par Alexandre Belavine, Alexander Polyakov et Alexandre Zamolodtchikov[3]. Un grand nombre de théories conformes en deux dimensions ont été résolues grâce à cette méthode, notamment les modèles minimaux et la théorie de Liouville.
En dimension supérieure à deux, le bootstrap conforme a été étudié depuis 2008, à la suite d'un papier de Riccardo Rattazzi, Viatcheslav Rytchkov, Erik Tonni et Alessandro Vichi[4]. Depuis, le bootstrap a mené à plusieurs résultats généraux sur les théories conformes et superconformes en trois, quatre, cinq et six dimensions. En trois dimensions, le bootstrap a produit des prédictions très précises pour les exposants critiques du modèle d'Ising[5] - [6] - [7].
Références
- (en) A. M. Polyakov, « Nonhamiltonian approach to conformal quantum field theory », Zh. Eksp. Teor. Fiz., vol. 66,‎ , p. 23–42
- (en) S. Ferrara, A. F. Grillo et R. Gatto, « Tensor representations of conformal algebra and conformally covariant operator product expansion », Annals of Physics, vol. 76,‎ , p. 161–188 (DOI 10.1016/0003-4916(73)90446-6)
- (en) A.A. Belavin, A.M. Polyakov et A.B. Zamolodchikov, « Infinite conformal symmetry in two-dimensional quantum field theory », Nuclear Physics B, vol. 241, no 2,‎ , p. 333–380 (ISSN 0550-3213, DOI 10.1016/0550-3213(84)90052-X, Bibcode 1984NuPhB.241..333B, lire en ligne)
- (en) Riccardo Rattazzi, Vyacheslav S. Rychkov, Erik Tonni et Alessandro Vichi, « Bounding scalar operator dimensions in 4D CFT », JHEP, vol. 12,‎ , p. 031 (DOI 10.1088/1126-6708/2008/12/031)
- (en) Sheer El-Showk, Miguel F. Paulos, David Poland, Slava Rychkov, David Simmons-Duffin et Alessandro Vichi, « Solving the 3d Ising Model with the Conformal Bootstrap II. c-Minimization and Precise Critical Exponents », Journal of Statistical Physics, vol. 157, nos 4-5,‎ , p. 869–914 (DOI 10.1007/s10955-014-1042-7, lire en ligne)
- (en) David Simmons-Duffin, « A semidefinite program solver for the conformal bootstrap », Journal of High Energy Physics, vol. 2015, no 6,‎ , p. 1–31 (ISSN 1029-8479, DOI 10.1007/JHEP06(2015)174, lire en ligne)
- (en) Leo P. Kadanoff, « Deep Understanding Achieved on the 3d Ising Model », sur Journal Club for Condensed Matter Physics,