Équations de Hamilton-Jacobi
Une transformation canonique est une transformation de l'espace des phases qui conserve les équations canoniques :
.
(On note où .)
On peut montrer qu'une transformation est canonique si et seulement si elle préserve les crochets de Poisson fondamentaux :
Fonctions génératrices
L'action peut s'écrire en fonction des variables de l'espace des phases :
Or les équations canoniques vérifiées par impliquent que vérifie les équations d'Euler-Lagrange :
On a donc stationnarité de l'action si et seulement si vérifie les équations canoniques, et de même pour .
On en déduit que si H et K vérifient leurs équations canoniques, on a stationnarité des actions correspondantes, soit :
d'où la condition dite d'invariance :
Une telle fonction F est appelée fonction génératrice de la transformation .
Fonction principale de Hamilton, équation de Hamilton-Jacobi
On note N le nombre de degrés de liberté du système, représentent 4N variables, qui sont reliées entre elles par les 2N relations de la transformation . On a donc 2N variables indépendantes, et donc plusieurs choix pour les variables de la fonction génératrice.
Si on choisit d'utiliser les variables , on a une fonction génératrice que l'on appelle fonction principale de Hamilton. Pour avoir effectivement une fonction de , il faut appliquer une transformation de Legendre à :
.
On a alors
et la condition d'invariance devient
On a choisi comme variables indépendantes, on peut donc identifier et l'on obtient :
;
;
.
Les deux premières équations permettent de déterminer la transformation à partir de la donnée de la fonction , et en combinant la première et la dernière équation, on a l'équation de Hamilton-Jacobi :
.
Application
Le but d'une telle transformation est de simplifier la résolution des équations du mouvement. Par exemple, en imposant , on a simplement et , soit et constants.
Il reste alors à déterminer pour obtenir la solution , or la transformation est entièrement déterminée par la donnée de la fonction génératrice, qui est solution de l'équation aux dérivées partielles
- Remarque
- Dans ce cas, la condition d'invariance devient . La fonction génératrice est alors simplement l'action du système.
Cette équation n'est pas a priori plus simple à résoudre que les équations de départ (en particulier s'il s'agit d'un Hamiltonien classique , on a alors des termes non linéaires).
Cependant, si l'Hamiltonien ne dépend pas explicitement du temps, il est conservé (d'après le théorème de Noether), on a donc directement :
d'où
et l'équation à résoudre est simplifiée :
Articles connexes
Cet article est issu de
wikipedia. Text licence:
CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.