Accueil🇫🇷Chercher

Équation de Liénard

En mathématiques, notamment dans l'étude des systèmes dynamiques et des équations différentielles, une équation de Liénard est une forme particulière d'équation différentielle du second ordre. Le système physique associé à cette équation est alors appelé système de Liénard.

Durant le développement des radios et des tubes à vide, les équations de Liénard furent beaucoup étudiées car elles permettaient de modéliser le comportement des circuits oscillants. Moyennant certaines hypothèses, le théorème de Liénard garantit l'existence d'un cycle limite pour de tels systèmes.

Définition

Soit f et g deux fonctions de classe sur , avec g une fonction impaire et f une fonction paire. Alors on appelle « équation de Liénard » l'équation différentielle :

.

On peut l'écrire sous forme d'un système différentiel, c'est-à-dire d'une équation vectorielle d'ordre un en dimension deux. On pose :

alors on appelle « système de Liénard » l'équation suivante :

Exemple

L'oscillateur de Van der Pol, qui vérifie l'équation :

est un système de Liénard.

Théorème de Liénard

Étant donné un système de Liénard qui vérifie :

  • ;
  • ;
  • F(x) possède une unique racine strictement positive en a, F(x) < 0 pour 0 < x < a ;
  • F(x) > 0 et est monotone pour x > a .

Alors le système de Liénard possède un unique cycle limite stable, qui entoure l'origine.

Voir aussi

Références

    Liens externes

    Articles connexes

    Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.