Accueil🇫🇷Chercher

Théorème de Sokhotski–Plemelj

Le théorème de Sokhotski–Plemelj en analyse complexe permet l'évaluation d'intégrales de Cauchy. Il a été démontré par Julian Sokhotski en 1873[1] et redécouvert par Joseph Plemelj[2] en 1908 dans sa résolution du problème de Riemann-Hilbert (en)[3].

Le théorème

Soit C un contour fermé régulier du plan et f une fonction analytique sur C. L'intégrale de Cauchy

définit deux fonctions analytiques[4] - [3] :

- à l'intérieur du domaine défini par C
- hors de ce domaine

On peut ainsi résoudre les problèmes où l'on impose sur C :

- un saut
- une valeur
- une relation du type

Ce dernier cas constitue le problème de Riemann-Hilbert.

Cas particulier

Soit f une fonction à valeur complexe définie et continue sur l'axe réel et soient a et b deux valeurs réelles telles que a < 0 < b. Alors

Un exemple en physique

En mécanique quantique et théorie quantique des champs on doit évaluer des intégrales du type[5] :

E est une énergie et t le temps. Cette intégrale en temps ne converge pas et on la remplace par :

Par application du cas particulier ci-dessus du théorème

Références

  1. (ru) Yu. V. Sokhotski, On Definite Integrals and Functions Employed in Expansions into Series, Université d'État de Saint-Pétersbourg,
  2. (en) Josip Plemelj, Problems in the sense of Riemann and Klein, Interscience Publishers, coll. « Interscience tracts in pure and applied mathematics »,
  3. (en) Martin Killian, « On the Riemann-Hilbert Problem », sur University College Cork
  4. (en) Howard E. Haber, « The Sokhotski-Plemelj Formula », sur Université de Californie à Santa Cruz
  5. (en) Steven Weinberg, The Quantum Theory of Fields, Volume 1 : Foundations, Cambridge University Press, , 640 p. (ISBN 0-521-67053-5)

Voir aussi

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.