Accueil🇫🇷Chercher

Nombre premier unique

Un nombre premier différent de 2 et 5 est dit unique si la période du développement décimal de son inverse n'est égale à la période du développement décimal d'aucun autre inverse de nombre premier.

Les nombres premiers uniques ont été décrits pour la première fois par Samuel Yates en 1980.

Un nombre premier p est unique et de période n si et seulement si il existe un entier naturel c tel que :

où est le n-ième polynôme cyclotomique.

La table ci-dessous rassemble les plus petits nombres premiers uniques p connus (suite A040017 de l'OEIS) et indique la longueur de la période de 1/p (suite OEIS A051627) :

Longueur de la période Nombre premier
13
211
337
4 101
109 091
129 901
9333 667
14909 091
2499 990 001
36999 999 000 001
48 9 999 999 900 000 001
38 909 090 909 090 909 091
19 1 111 111 111 111 111 111
23 11 111 111 111 111 111 111 111
39 900 900 900 900 990 990 990 991
62 909 090 909 090 909 090 909 090 909 091
120 100 009 999 999 899 989 999 000 000 010 001
150 10 000 099 999 999 989 999 899 999 000 000 000 100 001

Références

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.