Accueil🇫🇷Chercher

Nombre de Leyland

En thĂ©orie des nombres, les « nombres de Leyland[1] Â» sont dĂ©finis dans l'OEIS comme les entiers de la forme xy + yx, oĂą x et y sont des entiers strictement supĂ©rieurs Ă  1. La qualification "strictement" est essentielle : sans elle tout entier supĂ©rieur ou Ă©gal Ă  2 serait un nombre de Leyland car de la forme x1 + 1x.

Cette suite d'entiers est la suite OEIS A076980 de l'OEIS : 8, 17, 32, 54, 57, 100, 145, 177, 320, 368, etc. et la sous-suite des nombres de Leyland premiers est la suite OEIS A094133.

Cette formule a été proposée par Paul Leyland[2] comme un bon générateur pour tester des programmes généralistes de preuve de primalité, parce que ces nombres ne semblent présenter aucune propriété particulière que des programmes spécifiques pourraient exploiter[3].

En , le plus grand nombre de Leyland premier connu Ă©tait 8 6562 929 + 2 9298 656 (30 008 chiffres).

Références

(en) Cet article est partiellement ou en totalité issu de l’article de Wikipédia en anglais intitulé « Leyland number » (voir la liste des auteurs).
  1. Le seul ouvrage les mentionnant — sans préciser de conditions sur x et y — est (en) Richard Crandall et Carl Pomerance, Prime Numbers: A Computational Perspective, Springer, , p. 374, à propos de 2 6384 405 + 4 4052 638, nombre à 15 071 chiffres dont la primalité venait d'être démontrée en juillet 2004.
  2. (en) Paul Leyland's home page.
  3. Leyland, Primes of the form….

Lien externe

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.