Accueil🇫🇷Chercher

Icosidodécadodécaèdre adouci

En géométrie, l'icosidodécadodécaèdre adouci est un polyèdre uniforme non convexe, indexé sous le nom U46.

Icosidodécadodécaèdre adouci
Description de l'image Snub icosidodecadodecahedron.png.
Faces Arêtes Sommets
104 ((20+60){3}+12{5}+12{5/2}) 180 60
Type Polyèdre uniforme
Références d'indexation U46 – C58 – W112
Symbole de Wythoff | 53 3 5
Caractéristique -16
Groupe de symétrie I
Dual Hexacontaèdre hexagonal médial

Coordonnées cartésiennes

Les coordonnées cartésiennes des sommets d'un icosidodécadodécaèdre adouci centré à l'origine sont les permutations paires de

(±2α, ±2γ, ±2β),
(±(α+β/τ+γτ), ±(-ατ+β+γ/τ), ±(α/τ+βτ-γ)),
(±(-α/τ+βτ+γ), ±(-α+β/τ-γτ), ±(ατ+β-γ/τ)),
(±(-α/τ+βτ-γ), ±(α-β/τ-γτ), ±(ατ+β+γ/τ)) et
(±(α+β/τ-γτ), ±(ατ-β+γ/τ), ±(α/τ+βτ+γ)),

avec un nombre pair de signes plus, où

α = ρ+1,
β = τ2ρ22ρ+τ,
γ = ρ2+τρ,

où τ = (1+√5)/2 est le nombre d'or (quelquefois écrit φ) et ρ est la solution réelle de ρ³=ρ+1, ou approximativement 1,3247180. ρ est appelée la constante plastique. En prenant les permutations impaires des coordonnées ci-dessus avec un nombre impair de signes plus, cela donne une autre forme, l'énantiomorphe de ce polyèdre.

Voir aussi

Lien externe

Robert Ferréol, « Icosidodécadodécaèdre adouci », sur Encyclopédie des formes mathématiques remarquables

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.