Accueil🇫🇷Chercher

Foncteur essentiellement surjectif

En théorie des catégories, un foncteur est dit essentiellement surjectif si chaque objet de la catégorie d'arrivée est isomorphe à un objet image du foncteur.

DĂ©finition formelle

Soient C et D deux catégories. Un foncteur F : C → D est dit essentiellement surjectif si pour tout objet Y de D, il existe un objet X de C tel que , c'est-à-dire qu'il existe dans un isomorphisme.

Propriétés

L'une des seules utilités pour un foncteur d'être essentiellement surjectif, est que s'il est aussi pleinement fidèle, il définit alors une équivalence de catégories.

Exemples

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.