Accueil🇫🇷Chercher

Dîner des philosophes

Le problème du « dĂ®ner des philosophes Â» est un cas d'Ă©cole classique sur le partage de ressources en informatique système. Il concerne l'ordonnancement des processus et l'allocation des ressources Ă  ces derniers et a Ă©tĂ© Ă©noncĂ© par Edsger Dijkstra[1].

Le problème

Illustration du problème

La situation est la suivante :

  • Cinq philosophes (initialement, mais il peut y en avoir beaucoup plus) se trouvent autour d'une table ;
  • Chacun des philosophes a devant lui un plat de spaghettis ;
  • Ă€ gauche de chaque plat de spaghettis se trouve une fourchette.

Un philosophe n'a que trois Ă©tats possibles :

  • Penser pendant un temps indĂ©terminĂ© ;
  • ĂŠtre affamĂ© pendant un temps dĂ©terminĂ© et fini (sinon il y a famine) ;
  • Manger pendant un temps dĂ©terminĂ© et fini.

Des contraintes extérieures s'imposent à cette situation :

  • Pour manger, un philosophe a besoin de deux fourchettes : celle qui se trouve Ă  gauche de sa propre assiette, et celle qui se trouve Ă  droite (c'est-Ă -dire les deux fourchettes qui entourent sa propre assiette) ;
  • Quand un philosophe a faim, il va se mettre dans l'Ă©tat « affamĂ© » et attendre que les fourchettes soient libres ;
  • Si un philosophe n'arrive pas Ă  s'emparer d'une fourchette, il reste affamĂ© pendant un temps dĂ©terminĂ©, en attendant de renouveler sa tentative.

Le problème consiste à trouver un ordonnancement des philosophes tel qu'ils puissent tous manger, chacun à leur tour. Cet ordre est imposé par la solution que l'on considère comme celle de Dijkstra avec sémaphores ou Courtois avec des compteurs.

Remarques

Le problème du crash de processus : Socrate boit la ciguë et meurt avec sa fourchette gauche en main, empêchant définitivement Voltaire de manger.
  • Les philosophes, s'ils agissent tous de façon naĂŻve et identique, risquent fort de se retrouver en situation d'interblocage. En effet, il suffit que chacun saisisse sa fourchette de gauche et, qu'ensuite, chacun attende que sa fourchette de droite se libère pour qu'aucun d'entre eux ne puisse manger, et ce pour l'Ă©ternitĂ©.
  • On considère qu'un philosophe qui meurt (crash du processus) reste dans une phase « penser » infiniment. Il en rĂ©sulte donc un problème : que dire d'un philosophe qui meurt avec ses fourchettes en main ?
  • Pour plus de comprĂ©hension ce problème est aussi connu sous le nom de "problème des baguettes chinoises", oĂą le philosophe a besoin de deux baguettes pour pouvoir manger.

Solutions

Le diner des philosophes modélisé en Réseau de Petri
  • L'une des principales solutions Ă  ce problème est celle du sĂ©maphore, proposĂ©e Ă©galement par Dijkstra.
  • Une autre solution consiste Ă  attribuer Ă  chaque philosophe un temps de rĂ©flexion alĂ©atoire en cas d'Ă©chec (cette solution est en rĂ©alitĂ© incorrecte).
  • Il existe des compromis qui permettent de limiter le nombre de philosophes gĂŞnĂ©s par une telle situation, notamment une toute simple se basant sur la technique hiĂ©rarchique de Havender qui limite le nombre de philosophes touchĂ©s Ă  un d'un cĂ´tĂ© et deux de l'autre.

La solution de Chandy/Misra

En 1984, K. M. Chandy et J. Misra proposèrent une nouvelle solution permettant à un nombre arbitraire n d'agents identifiés par un nom quelconque d'utiliser un nombre m de ressources. Le protocole élégant et générique est le suivant :

  1. Pour chaque paire de philosophes pouvant accéder à la même fourchette, on commence par la donner à celui des deux qui a le plus petit nom (selon une certaine relation d'ordre). Toute fourchette est soit propre soit sale. Au début, toutes les fourchettes sont sales.
  2. Lorsqu'un philosophe veut manger, il doit obtenir les fourchettes de ses deux voisins. Pour chaque fourchette qui lui manque, il Ă©met poliment une requĂŞte.
  3. Lorsqu'un philosophe qui a une fourchette en main entend une requĂŞte pour celle-ci,
    • soit la fourchette est propre et il la garde.
    • soit la fourchette est sale, alors il la nettoie et il la donne.
  4. Après qu'un philosophe a fini de manger, ses deux fourchettes sont devenues sales. Si un autre philosophe avait émis une requête pour obtenir une de ses fourchettes, il la nettoie et la donne.

Solution dans le cas pair

Dans le cas pair une solution simple existe. On numérote les philosophes selon leur place à la table. Et l'on décide que les philosophes ayant un nombre pair prennent d'abord leur fourchette gauche, puis leur droite et l'inverse avec les philosophes ayant un nombre impair.

Preuve de l'exactitude de cette solution

Étudions le cas d'un philosophe qui prend d'abord sa fourchette gauche. S'il y arrive, il ne lui reste plus qu'à prendre sa fourchette droite. Celle-ci ne peut être définitivement bloquée : si le philosophe de droite la tient, c'est qu'il est en train de manger (il tient dans ce cas ses deux fourchettes). Ainsi nos philosophes ne se bloqueront jamais.

La compréhension de cette solution est plus aisée en prenant pour exemple la présence de deux philosophes.

Notes et références

  1. (en) Edsger W. Dijkstra, « Hierarchical ordering of sequential processes », Acta Informatica, vol. 1,‎ , p. 115-138 (lire en ligne, consulté le )

Voir aussi

Articles connexes

Lien externe

Cet article est issu de wikipedia. Text licence: CC BY-SA 4.0, Des conditions supplémentaires peuvent s’appliquer aux fichiers multimédias.